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Abstract. A fully automatic colour texture editing method is proposed,
which allows to synthesise and enlarge an artificial texture sharing an-
ticipated properties from its parent textures. The edited colour texture
maintains its original colour spectrum while its frequency is modified
according to one or more target template textures. Edited texture is
synthesised using a fast recursive model-based algorithm. The algorithm
starts with edited and target colour texture samples decomposed into a
multi-resolution grid using the Gaussian-Laplacian pyramid. Each band
pass colour factors are independently modelled by their dedicated 3D
causal autoregressive random field models (CAR). We estimate an op-
timal contextual neighbourhood and parameters for each of the CAR
submodel. The synthesised multi-resolution Laplacian pyramid of the
edited colour texture is replaced by the synthesised template texture
Laplacian pyramid. Finally the modified texture pyramid is collapsed
into the required fine resolution colour texture. The primary benefit of
these multigrid texture editing models is their ability to produce realis-
tic novel textures with required visual properties capable of enhancing
realism in various texture application areas.

1 Introduction

Image editing remains a complex user-directed task, often requiring proficiency
in design, colour spaces, computer interaction and file management. Editing pro-
vides the scene designer with tools which enable to control virtual scene objects,
geometric surfaces, illumination and objects faces appearance in the form of
their corresponding textures. Image editing software is often characterised [1]
by a seemingly endless array of toolbars, filters, transformations and layers. Al-
though some recent attempts [2,3,4,5,6,7,8] have been made to automate this
process, automatic integration of user preferences still remains an open problem
in the context of texture editing [9,10].

The primary contribution of our method is a simple intuitive and fully au-
tomatic tool for the scene designer to modify objects surface appearance by
controlled texture modifications. Contrary to some other texture editing ap-
proaches such as the procedural textures, the edited texture visual appearance
predictably corresponds to the anticipated projection.

Authentic and photo realistic appearance of natural materials covering sur-
faces of virtual objects in virtual or augmented reality rendered scenes requires
nature-like colour textures covering visualised scene objects. Such textures can
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be either digitised natural textures or textures synthesised from an appropriate
mathematical model. The former simplistic option suffers among others from
extreme memory requirements for storage of a large number of digitised cross-
sectioned slices through different material samples. Synthetic textures are more
flexible, extremely compressed (few parameters have to be stored only), they may
be evaluated directly in procedural form and can be designed to meet certain
constraints or to secure some desirable properties (e.g., smooth periodicity, no
visible discontinuities, etc.). The underlying mathematical models have besides
presented texture editing also many other applications (e.g., image restoration,
image and video compression, classification, segmentation, etc.).

Several monospectral texture modelling approaches were published, e.g.,
[11,12], among them also few colour models, e.g., [13,14,15,16] and some survey
articles are available [17,18] as well. [13] introduced a fast multiresolution Markov
random field based method. Although this method avoids the time consuming
Markov chain Monte Carlo simulation so typical for applications of Markov mod-
els it still requires several simplifying approximations. Several alternative Marko-
vian colour texture models such as the simultaneous 2D causal autoregressive
random fields (2D CAR) [16], 2D Gaussian Markov models (2D GMRF) [19], or
3D CAR [20] were introduced as well and later generalised also for Bidirectional
Texture Function (BTF) [21,22,23,24] or dynamic textures [25]. These models
are appropriate for colour texture synthesis not only because they do not suffer
from some problems of alternative options (see [17,18] for details) but they are
also easy to analyze as well as to synthesise and last but not least they are still
flexible enough to imitate a large set of natural and artificial textures.

2 Markovian Texture Model

We assume to have two colour textures Yα, Yδ which can be represented using
a Markovian random field model (MRF). The texture Yα is the input texture
which will be modified according to a target template texture Yδ. The edited
colour texture maintains most of its original colour spectrum but changes its
frequency to resemble the template texture Yδ. Single frequency factors are
modelled using the exceptionally fast 3D wide-sense Markov causal autoregres-
sive random field model (3D CAR). Let the digitised colour texture Y is indexed
on a finite rectangular three-dimensional N×M×d underlying lattice I, where
N × M is the image size and d is the number of spectral bands (i.e., d = 3 for
usual colour textures). Let us denote a simplified multiindices r, s to have two
components r = [r1, r2], s = [s1, s2]. The first component is row and the second
one is column index, respectively.

2.1 Frequency Factorisation

The analyzed colour texture image is decomposed into a multi-resolution grid
using Laplacian pyramid and the intermediary Gaussian pyramid. The benefit
of the multigrid approach is the replacement of a large neighbourhood CAR



1148 M. Haindl and V. Havĺıček

model with a set of several simpler CAR models which are easy to estimate and
synthesise. Each resolution data are independently modelled by their dedicated
CAR. Each one generates a single spatial frequency band of the texture. The
Gaussian pyramid Ÿ

(k)
ν is a sequence of images in which each one is a low-

pass down-sampled version of its predecessor where the weighting function (FIR
generating kernel) is chosen subject to the following constraints:

ws = ŵs1 ŵs2 ,
∑

i ŵi = 1 , ŵi = ŵ−i , ŵ0 = 2ŵ1 (ζ = 1)

and ν ∈ {α, δ}. The solution of the above constraints for the reduction factor 3
(2ζ + 1) is ŵ0 = 0.5, ŵ1 = 0.25 and the FIR equation is now

Ÿ (k)
r,ν =

ζ∑

i,j=−ζ

ŵiŵj Ÿ
(k−1)
2r+(i,j),ν . (1)

The Gaussian pyramid for a reduction factor n is

Ÿ (k)
r,ν =↓n

r (Ÿ (k−1)
ν ⊗ w) k = 1, 2, . . . , (2)

where Ÿ
(0)
ν = Yν , ↓n denotes down-sampling with reduction factor n and

⊗ is the convolution operation.
The Laplacian pyramid Ẏ

(k)
r,ν contains band-pass components and provides

a good approximation to the Laplacian of the Gaussian kernel. It can be con-
structed by differencing single Gaussian pyramid layers:

Ẏ (k)
r,ν = Ÿ (k)

r,ν − ↑n
r (Ÿ (k+1)

ν ) k = 0, 1, . . . , (3)

where ↑n is the up-sampling with an expanding factor n. Single orthogonal
multispectral components are thus decomposed into a multi-resolution grid and
each resolution data are independently modelled by their dedicated independent
Gaussian noise driven autoregressive random field model as follows.

2.2 3D CAR Texture Model

Single frequency factors are modelled using the causal autoregressive random
field (3D CAR) model [20] which is a family of random variables with a joint
probability density on the set of all possible realisations Y of the M × N × d
lattice I, subject to the following condition:

p(Y | γ, Σ−1) =
|Σ−1| (MN−1)

2

(2π)
d(MN−1)

2

exp

{

−1
2
tr{Σ−1

(−I
γT

)T

ṼMN−1

(−I
γT

)

}
}

,

where the following notation is used

Ṽr−1 =
(

Ṽyy(r−1) Ṽ T
xy(r−1)

Ṽxy(r−1) Ṽxx(r−1)

)

, Ṽyy(r−1) =
∑r−1

k=1 YkY T
k ,

Ṽxy(r−1) =
∑r−1

k=1 XkY T
k , Ṽxx(r−1) =

∑r−1
k=1 XkXT

k .

The 3D CAR model can be expressed as a stationary causal uncorrelated noise
driven 3D autoregressive process:
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Yr = γXr + er , (4)

where γ is the d × dη parameter matrix γ = [A1, . . . , Aη] , η = card(Ic
r ) ,

Ic
r is a causal neighbourhood, er is a Gaussian white noise vector with zero

mean and a constant but unknown covariance matrix Σ (estimated by (7)) and
Xr is a corresponding vector of Yr−s (design vector).

Parameter Estimation. The selection of an appropriate CAR model support
is important to obtain good results in modelling of a given random field. If the
contextual neighbourhood is too small it cannot capture all details of the random
field. Inclusion of the unnecessary neighbours on the other hand add to the com-
putational burden and can potentially degrade the performance of the model as
an additional source of noise. The optimal Bayesian decision rule for minimising
the average probability of decision error chooses the maximum posterior proba-
bility model, i.e., a model Mi corresponding to maxj{p(Mj|Y (r−1))} where
Y (r−1) denotes the known process history Y (r−1) = {Yr−1, Yr−2, . . . , Y1} .
The most probable CAR model given past data Y (r−1), the normal-Wishart
parameter prior and the uniform model prior is the model Mi for which
i = arg maxj{Dj(r−1)}

Dj(r−1) =
d2η

2
ln π

d∑

i=1

[

ln Γ (
β(r) − dη + d + 2 − i

2
) − ln Γ (

β(0) − dη + d + 2 − i

2
)

]

− d

2
ln |Vxx(r−1)| − β(r) − dη + d + 1

2
ln |λ(r−1)|

where β(r) = β(0) + r − 1 , β(0) > 1 , and

λ(r) = Vyy(r) − V T
xy(r)V

−1
xx(r)Vxy(r) . (5)

Parameter estimation of a CAR model using the maximum likelihood, the least
square or Bayesian methods can be found analytically. The Bayesian parameter
estimations of the causal AR model with the normal-Wishart parameter prior
which maximise the posterior density are:

γ̂T
r−1 = V −1

xx(r−1)Vxy(r−1) (6)

and

Σ̂r−1 =
λ(r−1)

β(r)
, (7)

where Vuz(r−1) = Ṽuz(r−1) + Vuz(0) and matrices Vuz(0) are the corresponding
matrices from the normal-Wishart parameter prior. The estimates (5), (6),(7)
can be also evaluated recursively if necessary.

Model Synthesis. The CAR model synthesis is very simple and a 3D causal
CAR random field can be directly generated from the model equation (4) using a
multivariate Gaussian generator. Single CAR models synthesise spatial frequency
bands of the texture.
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2.3 Laplacian Pyramid Swap

The synthesised Laplacian pyramid layers from the target texture target tem-
plate texture Ẏδ are used instead of the corresponding input texture Laplacian
pyramid layers (Ẏα), i.e.

Ẏ (k)
r,α = Ẏ

(k)
r,δ ∀k . (8)

The input texture Yα Laplacian pyramid layers (Ẏα) are not needed and their
corresponding 3D CAR models are neither estimated nor synthesised. On the
contrary, the input Gaussian pyramid Ÿ

(k)
r,α at the most coarse level contains

original texture colour spectrum and is needed (and thus estimated) for the
edited texture synthesis. If the Laplacian pyramids of both textures have similar
numerical values, then the edited texture colour spectrum is unchanged, other-
wise its colour spectrum is a compromise between both textures colour spectra.
The edited fine-resolution synthetic colour texture is obtained from the pyramid
collapse procedure (inversion process to (2),(3) modified to (8)).

3 Experimental Results

Figs.1,2 show six examples of different natural or man made colour textures
edited using the presented algorithm. All original natural colour textures (upper

Fig. 1. Natural cloud and fur textures (upper row), their resynthesis using a set of 3D
CAR models (bottom left) and their edited counterparts (bottom right)



Texture Editing Using Frequency Swap Strategy 1151

Fig. 2. Wood, tile, lichen, and leather natural textures and their resynthesised edited
counterparts using the 3D CAR models (middle and bottom)

rows) are taken either from the VisTex [26] database or from our own exten-
sive colour texture database. The images on Fig.1-bottom left show synthe-
sised enlarged examples of the input textures while the Figs.1-bottom right,2-
middle,bottom rows present results from the presented texture editing method
with frequency modification using the alternate column texture as the template
texture Yδ with the reduction factor n = 2 and the number of pyramid lay-
ers k ∈ {2, 3}. The edited textures are generated fully automatically and they
clearly demonstrate original texture frequency modified to resemble the template
texture frequency. The method can be easily combined with some texture seg-
menter if we need to edit separately single textures appearing in the scene. The
method allows very high compression ratio, because only tens parameters for
every fractional 3D CAR model have to be stored regardless of the required tex-
ture enlargement. This extreme compression ration (1 : 106 for BTF modelling
[21]) is the prerequisite for BTF editing applications where alternative texture
editing methods cannot be used due to unsolvable memory requirements.

4 Conclusions

A simple fully automatic colour texture editing method is proposed. The method
allows to synthesise and enlarge artificial textures which resemble both their
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parents textures. The edited texture inherits primarily spectral information from
one parent and frequency information from the other one. This procedure can be
repeated for more complex lineage trees which allows to inherit visual properties
from more than two parent textures. The method allows very high compression
ratio for transmission or storing texture information, while sometimes compro-
mises visual quality of the resulting texture, similarly as any other adaptive
texture model. The edited texture analysis as well as synthesis is extremely fast
(due to complete analytical solution) and can be used in real-time applications.
The method can be easily generalised also for other types of textures such as the
Bidirectional Texture Function (BTF) or dynamic textures.
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